Stochastic analysis of an elastic 3D half-space respond to random boundary displacements: exact results and Karhunen-Loéve expansion
نویسنده
چکیده
A stochastic response of an elastic 3D half-space to random displacement excitations on the boundary plane is studied. We derive exact results for the case of white noise excitations which are then used to give convolution representations for the case of general finite correlation length fluctuations of displacements prescribed on the boundary. Solutions to this elasticity problem are random fields which appear to be horizontally homogeneous but inhomogeneous in the vertical direction. This enables us to construct explicitly the Karhunen-Loève (K-L) series expansion by solving the eigen-value problem for the correlation operator. Simulation results are presented and compared with the exact representations derived for the displacement correlation tensor. This paper is a complete 3D generalization of the 2D case study we presented in J. Stat. Physics, v.132 (2008), N6, 1071-1095.
منابع مشابه
Effect of Rotation and Stiffness on Surface Wave Propagation in a Elastic Layer Lying Over a Generalized Thermodiffusive Elastic Half-Space with Imperfect Boundary
The present investigation is to study the surface waves propagation with imperfect boundary between an isotropic elastic layer of finite thickness and a homogenous isotropic thermodiffusive elastic half- space with rotation in the context of Green-Lindsay (G-L model) theory. The secular equation for surface waves in compact form is derived after developing the mathematical model. The phase velo...
متن کاملElastic Wave Propagation at Imperfect Boundary of Micropolar Elastic Solid and Fluid Saturated Porous Solid Half-Space
This paper deals with the reflection and transmission of elastic waves from imperfect interface separating a micropolar elastic solid half-space and a fluid saturated porous solid half-space. Longitudinal and transverse waves impinge obliquely at the interface. Amplitude ratios of various reflected and transmitted waves are obtained and computed numerically for a specific model and results obta...
متن کاملQuasi-Static Deformation of a Uniform Thermoelastic Half –Space Due to Seismic Sources and Heat Source
This paper investigates the quasi-static plane deformation of an isotropic thermoelastic half-space due to buried seismic sources and heat source. Governing equations of thermo-elasticity are solved to obtain solutions for seismic sources in a thermoelastic half-space. The general solutions are acquired with the aid of Laplace and Fourier transforms and with the use of boundary conditions. The ...
متن کاملWave Propagation at the Boundary Surface of Elastic Layer Overlaying a Thermoelastic Without Energy Dissipation Half-space
The present investigation is to study the surface wave propagation at imperfect boundary between an isotropic thermoelastic without energy dissipation half-space and an isotropic elastic layer of finite thickness. The penetration depth of longitudinal, transverse, and thermal waves has been obtained. The secular equation for surface waves in compact form is derived after developing the mathemat...
متن کاملTHE EFFECT OF PURE SHEAR ON THE REFLECTION OF PLANE WAVES AT THE BOUNDARY OF AN ELASTIC HALF-SPACE
This paper is concerned with the effect of pure shear on the reflection from a plane boundary of infinitesimal plane waves propagating in a half-space of incompressible isotropic elastic material. For a special class of constitutive laws it is shown that an incident plane harmonic wave propagating in the considered plane gives rise to a surface wave in addition to a reflected wave (with angle o...
متن کامل